Reinforcement Learning via AIXI Approximation

نویسندگان

  • Joel Veness
  • Kee Siong Ng
  • Marcus Hutter
  • David Silver
چکیده

This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a Monte Carlo Tree Search algorithm along with an agentspecific extension of the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a number of stochastic, unknown, and partially observable domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monte Carlo AIXI Approximation

This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. Our approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the af...

متن کامل

On the Computability of AIXI

How could we solve the machine learning and the artificial intelligence problem if we had infinite computation? Solomonoff induction and the reinforcement learning agent AIXI are proposed answers to this question. Both are known to be incomputable. In this paper, we quantify this using the arithmetical hierarchy, and prove upper and corresponding lower bounds for incomputability. We show that A...

متن کامل

Nonparametric General Reinforcement Learning

Reinforcement learning problems are often phrased in terms of Markov decision processes (MDPs). In this thesis we go beyond MDPs and consider reinforcement learning in environments that are non-Markovian, non-ergodic and only partially observable. Our focus is not on practical algorithms, but rather on the fundamental underlying problems: How do we balance exploration and exploitation? How do w...

متن کامل

A Gentle Introduction to the Universal Algorithmic Agent AIXI

Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental prior probability distribution is known. Solomonoff’s theory of universal induction formally solves the problem of sequence prediction for unknown prior distribution. We combine both ideas and get a parameter-free theory of universal Artificial Intelligence. We give strong arguments that...

متن کامل

Asymptotic non-learnability of universal agents with computable horizon functions

Finding the universal artificial intelligent agent is the old dream of AI scientists. Solomonoff Induction was one big step towards this, giving a universal solution to the general problem of sequence prediction by defining a universal prior distribution. Hutter defined the AIXI model, which extends the latter to the reinforcement learning framework, where almost all if not all AI problems can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1007.2049  شماره 

صفحات  -

تاریخ انتشار 2010